Synchronization Phenomena & Chimera States in Coupled Oscillator Networks

A. Provata

Institute of Nanoscience and Nanotechnology National Center for Scientific Research "Demokritos"

26th Summer School-Conference on "Dynamical Systems and Complexity" NTUA, Athens 2019

Overview:

- 1. Introduction & Motivation
 - The System: Network and Dynamics
 - Dynamics and Synchronization phenomena:
 - What is a chimera state?
 - Applications in Brain Science et al.
- 2. The Leaky Integrate-and-Fire (LIF) Model
 - Nonlocal Connectivity
 - Other connectivities (Reflecting, Diagonal)
 - Hierarchical Connectivity
 - Non-local connectivity 2D & 3D
- 3. The FitzHugh Nagumo (FHN) Model
 - Non-local Connectivity 1D
 - Hierarchical Connectivity
- 4. Conclusions & Open Problems

1.4 Dynamics of Single Oscillators & Synchronization phenomena

Single Element !!!Spiking!!!

Coupled system

- Single frequency!!! or
- Distribution of frequencies and/or
- Distribution of parameters and/or
- Distribution of coupling constants

Typical models of nonlinear !neuron! oscillators

1.5 Synchronization phenomena

1. Full synchronization: Starting from random initial states

 $u_i(t=0) \neq u_j(t=0), i,j=1,2,...N,$ $\exists t_0 : u_i(t) = u_j(t) \forall t \& \forall (i,j), for t > t_0$

2. No-synchronization: Starting from random initial states

 $u_i(t=0) \neq u_j(t=0), i, j = 1, 2 \dots N,$ => $u_i(t) \neq u_i(t) \forall t \text{ and } \forall (i, j)$

3. Partial synchronization: Starting from random initial states and identical oscillators & $\sigma_{ij} = \sigma$

 $u_i(t=0) \neq u_i(t=0), i, j=1, 2... N$

 $\forall t_0 \& \{K\} = [K, K+1, K+2, ..., K+K']$ $: u_l(t) = u_m(t) \quad \forall (l,m) \in \{K\}, \text{ for } t > t_0$

while $u_i(t) \neq u_j(t) \forall (i,j) \notin \{K\}, \text{ for } t > t_0$

??? Partial Brain Activity ???
???Fundamental Understanding of Chimeras???

1. 6 Elements of Chimera States

Elements:

- identical oscillators
- identically linked in networks
- random initial conditions

Outcomes: *Complete Synchronization ++ Partial synchronization (or partial disorder...) "Chimera State" *Complete disorder (Abrams and Strogatz in 2004)

Chimera monster: with head of a lion, body of a goat, and tail of a snake.

Red-figure Apulian plate, c. 350–340 BC

-2002: Kuramoto and Battogtokh, Nonlin. Phen. in Complex Sys., 5:380.
-2004: Abrams and Strogatz, Phys. Rev. Lett., 93:174102.
-2015: Panaggio and Abrams, Nonlinearity, 28:R67 (review).
-2016: Schöll, EPJ-ST, 225:891 (review).
-2018: Omel'chenko, Nonlinearity, 31 (5), R121 (review).

Quantitative Description

Visual representation via the space-time plot

1.7 Experiments

Now it has experimental verifications in the domains: *Mechanics: Coupled metronomes (Martens et al, Proc. Nat. Acad. Sciences, 2013) (Blaha, Burrus,... Sorrentino, Chaos, 2017) *Electronics: Equivalent circuits (Meena et al., Int. Jour. Bifurcations and Chaos, 2016) (Klinshov ... Nekorkin, Phys. Rev. E, 2016) *Chemical Dynamics: BZ experiments (Tinsley Showalter, Nature Physics, 2012), (Taylor ... Showalter, Phys. Chem.ChemPhys. 2016).

*Lasers: Optical coupled-map lattices via liquid-crystal spatial light modulators (*Hagerstrom et al., Nature Physics, 2012*) (*Viktorov, Habruseva, ...Kelleher, CLEO-IQEC-2013*).

*Uni-hemispheric sleep in birds and dolphins (*Panaggio and Abrams, 2015*) * Partial & mal-functionality of the brain-Epilepsy (Mormann et al, *2012*, *Anderjack et al., 2016*)

* Synchronization phenomena in the firing of fireflies etc (*Ott, Antonsen, Chaos 2017*)

Videos:

https://www.quantamagazine.org/physicists-discover-exotic-patterns-of-synchronization-20190404/ https://www.youtube.com/watch?v=_3q6ni6C0Z4

1.8 Applications in Neuron Dynamics

Partial Synchronisation in the form of Chimera States is first numerically observed in the domain of neuron dynamics:

* Phase Oscillator (Kuramoto et al. 2002, Abrams et al. 2004)

- * FitzHugh Nagumo Oscillator (Omelchenko et al, 2013, 2014, 2015)
- * Leaky Integrate-and-Fire (Olmi et al., 2010, Luccioli et al. 2010, Tsigkri et al. 2015)
- * van der Pol oscillators (Ulonska et al., 2016)
- * Hindmarsh-Rose Oscillator (*Hizanidis et al., 2014, 2016*)

Population Dynamics & Reaction Diffusion:

- * BZ Reaction: (Tinsley Showalter, Nature Physics, 2012)
- * Population Dynamics (*Hizanidis ..., PRE 2015*)

Materials:

* Metamaterials: (Lazarides et al., 2015; Hizanidis et al. 2016; Shena et al. 2017)

Importance & Influence of :	
a) Dynamics	b) Network Topology
Spiking	Nonlocal Connectivity
Cut-offs	Topology of connections
System parameters	Coupling strength

2.1 The Leaky Integrate-and-Fire Model (Louis Lapicque, 1907) [propagation of electrical signals in neurons, simple,

popular in computational neuroscience]

$$\frac{du(t)}{dt} = \mu - u(t)$$

 $u(t) \rightarrow u_{rest}$, when $u(t) > u_{th}$

u(*t*)=*membrane potential p*_r=refractory period
 μ= leaky integrator constant

$$u(t) = \mu - (\mu - u_{rest})e^{-t}$$

for $u_{rest} < u(t) < u_{th}$

LIF Model with refractory period

$$T = \ln \frac{\mu - u_{rest}}{\mu - u_{th}}$$

2.2 Coupled LIF oscillators in various connectivity schemes

$$\frac{du_i(t)}{dt} = \mu - u_i(t) + \frac{1}{R} \sum_{j=connect.} \sigma_{ij}[u_i(t) - u_j(t)]$$
$$u_i(t) \rightarrow 0, \text{ when } u_i(t) > u_{th}$$

non-local

 σ_{ij} = coupling strength, [σ , 0] μ =1 u_{th} =0.98 *Periodic boundary conditions: 1D-> ring 2D-> torus 3D-> hypertorus

*Variables: σ , p_r , geometry

2.2 Coupled LIF oscillators.... (continued)

Olmi, Politi & Torcini, EPL, vol. 92, 60007 (2010) Luccioli & Politi, PRL, vol. 105, 158104 (2010)

2.3 Coupled LIF Oscillators in 1D (ring)

$$\frac{du_i(t)}{dt} = \mu - u_i(t) + \frac{\sigma}{2R} \sum_{j=i-R}^{i+R} \left[u_i(t) - u_j(t) \right]$$
$$u_i(t) \rightarrow 0, \text{ when } u_i(t) > u_{th}$$

a) Without refractory period => single chimera $p_r=0$

b) With refractory period => multi-chimera $p_r = 50\%$ T

17

Coupled LIF Oscillators: Influence of coupling strength

As $R \uparrow$ the number of (in)coherent parts decreases: Expected... Parameter range for chimeras : $\sigma \in (0.5, 0.8)$, $p_r \in (0T_s, 1.0T_s)$ 19

2.4 Reversion of coherence

2.4.1 Solitaries/Chimeras for small $\sigma < 1.0$

Other parameters are: σ = 0.4, N = 1000, μ = 1. and u _{th} = 0.98

2.4.2 Typical Chimeras σ >1.5

a) R = 10 (d=0.041), b) R = 100 (d=0.401) c) R = 150 (d=0.601).

Other parameters are: σ = 1.6, N = 1000, μ = 1. and u _{th} = 0.98

2.4.3 Coherence reversion with σ

Other parameters are: R= 120 (d=0.481), N = 1000, μ = 1. and u_{th} = 0.98

2.4.4 Dependence on σ (continued)

Transition is shown between

1.0<σ<1.5

Parameters are: R= 120 (d=0.481)-(blue-dashed lines) R= 200 (d=0.801)-(black-solid lines), N = 1000, μ = 1. and u_{th} = 0.98

23

2.4 Coupled LIF oscillators in various connectivity schemes

2.4 Coupled LIF ... connectivity schemes (continued)

Non-local connectivity $\sigma_{ij} = \begin{cases} \sigma & \text{if } N - i - R \le j \le N - i - R \\ 0 & \text{otherwise} \end{cases}$

Reflecting connectivity $\sigma_{ij} = \begin{cases} \sigma & \text{if } N - i - R \leq j \leq N - i - R \\ 0 & \text{otherwise} \end{cases}$

Diagonal connectivity

$$\sigma_{ij} = \begin{cases} \sigma & \text{if } \frac{N}{2} + i - R \le j \le \frac{N}{2} + i - R \\ 0 & \text{otherwise} \end{cases}$$

2.5 Reflecting Connectivity

Confinement Phenomena: The activity gets confined in one semi-ring for small values of *R*. In the other semi-ring the elements stay near-threshold. When $R \rightarrow N$ the activity extends to the entire system. $(\sigma=0.4, p_r=0, N=1000, \mu=1.0)$

(B₇300)

σ=**0.4**, *R*=100, *N*=1000, *μ*=1.0 and *u*_{th}=0.98

2.6. Nontrivial generalizations in 2D & 3D

System size: *N*=100 X100, μ=1.0

(b) $\sigma = 0.7 N_R = 2600$

Grid: cannot exist in 1D As the region of interaction *R* increases:

- multiplicity does not change
- grouping of coherent regions takes place
- section for j=16 the groups become more distinct as R increases

$$\sigma$$
=0.7, p_r =0.22 T_s

(c) $\sigma = 0.7 \text{ N}_{\text{R}} = 3024$

60 80 100

0

0 20 40

X

2.7 Results for chimeras in 3D connectivity

 ω_{ijk}

2.26

2.15

2.04

Other 3D stable patterns

Reversion of coherence σ~0.3

3.1 The FitzHugh Nagumo Model (1961):

[originates from the Hodgkin–Huxley model and models propagation of electrical signals in neurons]

$$\epsilon \frac{du(t)}{dt} = u(t) - \frac{u^{3}(t)}{3} - v(t) + I(t) \qquad \begin{array}{l} \alpha = 0.5 \\ \epsilon = 0.05 \\ \frac{dv(t)}{dt} = u(t) + \alpha \end{array} \qquad I(t) = \text{const} = 0.5$$

35

3.2 Coupled FitzHugh Nagumo Oscillators (in a ring)

* With the current development on networks, a first approach is to put the oscillators in a ring

$$\epsilon \frac{du_{i}(t)}{dt} = u_{i}(t) - \frac{u_{i}^{3}(t)}{3} - v_{i}(t) + \frac{\sigma}{2R} \sum_{j=i-R}^{i+R} [u_{j}(t) - u_{i}(t)]$$
$$\frac{dv_{i}(t)}{dt} = u_{i}(t) + \alpha + \frac{\sigma}{2R} \sum_{j=i-R}^{i+R} [v_{j}(t) - v_{i}(t)]$$
$$36$$

[Parenthesis on Brain Connectivity:

Neurons: are electrically excitable cells which process and transmit information through electrical signals

- *soma* (contains the nucleus, typical 25µm)
- *dendrites* (receive signals)
- *axons* (connect neurons and transmit signals, size 1µm, max 1m!)
- *axon terminals* (contain synapses to communicate the signal)

DTI – MRI: Neuron axons in **3D** representation

- Resolution: 1-3mm
- Fractal dimensions of the neuron axons network: 2.5-2.6
- Different correlations and fractality for neurodegenerative disorders

3.3 Coupling on Fractal Networks

Appearance and destruction of a nested/ramified/hierarch ical chimera state

Ramifications are due to fractal connectivity

 σ = coupling strength

For σ >> we drive to synchronization

Omelchenko et al. PRE 2015

See movie: chimera-fractal

[Parenthesis: Effects of noise

Noise in the distribution of coupling strength σ

The role of spatial correlations in connectivity

I. Non-local connectivity II. Asymmetric nonlocal III. Fractal-hierarchical connectivity IV. Reflecting connectivity V. Diagonal connectivity

VI. Modular networks connectivity

 Random connectivity networks
 Random values of the coupling strengths

3. Small world networks

• • •

4. Other realistic networks

Spatial correlations in connectivity

If noise is added in the connectivity, chimera state starts **disintegrating**

4. Conclusions

- Chimera States in FHN and LIF neuron dynamics
- Spiking regime induces chimera states
- Nonlocal (spatially correlated) connectivity produces chimera states
- Hierarchical connectivity: traveling chimeras

Open Problems

- Connection of synchronization patterns with memory and cognition
- Interplay between topology and dynamics
- Spatial correlations in the connectivity => chimera states???
- Time dependent connectivity
- Apoptosis of neurons
- Influence of external forces on chimera states
- Influence of initial conditions...

Collaborations & Thanks

NCSR Demokritos

- * Dr. Panayotis Katsaloulis
 * Dr. Dimitris Verganelakis
 * Nefeli Tsigkri-DeSmedt
 * Theodore Kasimatis
 * Dr. Johanne Hizanidis
 * George Argyropoulos
 * Ioannis Koulierakis
 * George Karakos
 * Despina Gatzioura
- * Stratis Tsirtsis

TU Berlin

- * Alexander Smith
- * Dr. Thomas Isele
- * Dr. Iryna Omelchenko
- * Prof. Philipp Hoevel
- * Dr. Anna Zakharova
- * Prof. Eckehard Schoell

THANK YOU FOR YOUR ATTENTION !

Motivating Questions:

Theory:

- Why chimera numerical evidence is mostly linked with neuron-related models?
- Spiking dynamics essential in neuron models: Is it also essential for the production of chimera states?
- Role of **connectivity** and the formation of chimera states ? Are spatial correlations important for the formation of chimera states??

Applications:

- Are chimera states, as patterns formed under certain (external) conditions in co-operation with internal dynamics+connectivity, relevant in memory & cognition-related activities.
- Is the form of chimera patterns relevant in brain neurological/ neurodegenerative disorders?
- Can it be revealed in experiments of brain partial activity (such simple task Experiments: parroting, eye movement, finger tapping)?